Search results for "noncontact atomic force microscopy"

showing 4 items of 4 documents

On-surface covalent linking of organic building blocks on a bulk insulator.

2011

On-surface synthesis in ultrahigh vacuum provides a promising strategy for creating thermally and chemically stable molecular structures at surfaces. The two-dimensional confinement of the educts, the possibility of working at higher (or lower) temperatures in the absence of solvent, and the templating effect of the surface bear the potential of preparing compounds that cannot be obtained in solution. Moreover, covalently linked conjugated molecules allow for efficient electron transport and are, thus, particularly interesting for future molecular electronics applications. When having these applications in mind, electrically insulating substrates are mandatory to provide sufficient decoupli…

Materials sciencenoncontact atomic force microscopymolecular electronicsGeneral EngineeringGeneral Physics and AstronomyMolecular electronicssurface chemistryInsulator (electricity)NanotechnologyinsulatorConjugated system530Electron transport chainSolventMetalcovalent linkingCovalent bondvisual_artvisual_art.visual_art_mediumMoleculeon-surface synthesisGeneral Materials SciencebulkACS nano
researchProduct

Direct Visualization of Molecule Deprotonation on an Insulating Surface

2012

Elucidating molecular-scale details of basic reaction steps on surfaces is decisive for a fundamental understanding of molecular reactivity within many fields, including catalysis and on-surface synthesis. Here, the deprotonation of 2,5-dihydroxybenzoic acid (DHBA) deposited onto calcite (101;4) held at room temperature is followed in situ by noncontact atomic force microscopy. After deposition, the molecules form two coexisting phases, a transient striped phase and a stable dense phase. A detailed analysis of high-resolution noncontact atomic force microscopy images indicates the transient striped phase being a bulk-like phase, which requires hydrogen bonds between the carboxylic acid moie…

noncontact atomic force microscopyCarboxylic acidCatecholsGeneral Physics and AstronomyMicroscopy Atomic ForceKelvin probe force microscopy530Calcium Carbonatechemistry.chemical_compoundDeprotonationPhase (matter)Materials TestingHydroxybenzoatesMoleculeGeneral Materials ScienceReactivity (chemistry)CarboxylateParticle Sizechemistry.chemical_classificationKelvin probe force microscopeHydrogen bondinsulating surfaceGeneral EngineeringElectric ConductivityMolecular ImagingNanostructuresCrystallographychemistrydeprotonationProtons
researchProduct

Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy

2013

The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip–surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density dz at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density dΔf at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip–surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacemen…

noiseCantilevernoncontact atomic force microscopyGeneral Physics and AstronomyNanotechnologyCantileverlcsh:Chemical technologyNoise (electronics)lcsh:Technology530Full Research PaperOpticsPhase noiseNanotechnologyGeneral Materials ScienceDetection theorylcsh:TP1-1185Electrical and Electronic Engineeringlcsh:SciencePhysicsNoise temperaturefilterbusiness.industrylcsh:TNoise spectral densityBandwidth (signal processing)Spectral density(NC-AFM)noncontact atomic force microscopy (NC-AFM)lcsh:QC1-999Nanosciencelcsh:Qfeedback loopbusinesslcsh:Physics
researchProduct

Determining cantilever stiffness from thermal noise

2013

We critically discuss the extraction of intrinsic cantilever properties, namely eigenfrequency fn, quality factor Qn and specifically the stiffness kn of the nth cantilever oscillation mode from thermal noise by an analysis of the power spectral density of displacement fluctuations of the cantilever in contact with a thermal bath. The practical applicability of this approach is demonstrated for several cantilevers with eigenfrequencies ranging from 50 kHz to 2 MHz. As such an analysis requires a sophisticated spectral analysis, we introduce a new method to determine kn from a spectral analysis of the demodulated oscillation signal of the excited cantilever that can be performed in the frequ…

CantileverMaterials scienceAcousticsInstrumentationGeneral Physics and AstronomyNanotechnologythermal excitationlcsh:Chemical technologylcsh:TechnologySignal530Full Research PaperstiffnessQuality (physics)medicineNanotechnologylcsh:TP1-1185General Materials ScienceElectrical and Electronic Engineeringlcsh:Sciencecantileverlcsh:TOscillationSpectral densityStiffnessQ-factornoncontact atomic force microscopy (NC-AFM)lcsh:QC1-999spectral analysisNanoscienceresonanceQ factorlcsh:Qmedicine.symptomAFMlcsh:Physics
researchProduct